miR-210 and GPD1L regulate EDN2 in primary and immortalized human granulosa-lutein cells
Endothelin-2 (EDN2), expressed at a narrow window during the periovulatory period, critically affects ovulation and corpus luteum (CL) formation. LH (acting mainly via cAMP) and hypoxia are implicated in CL formation; therefore, we aimed to elucidate how these signals regulate EDN2 using human primary (hGLCs) and immortalized (SVOG) granulosa-lutein cells. The hypoxiamiR, microRNA-210 (miR-210) was identified as a new essential player in EDN2 expression. Hypoxia (either mimetic compound-CoCl2, or low O2) elevated hypoxia-inducible factor 1A (HIF1A), miR-210 and EDN2. Hypoxia-induced miR-210 was suppressed in HIF1A-silenced SVOG cells, suggesting that miR-210 is HIF1A dependent. Elevated miR-210 levels in hypoxia or by miR-210 overexpression, increased EDN2. Conversely, miR-210 inhibition reduced EDN2 levels, even in the presence of CoCl2, indicating the importance of miR-210 in the hypoxic induction of EDN2. A molecule that destabilizes HIF1A protein, glycerol-3-phosphate dehydrogenase 1-like gene-GPD1L, was established as a miR-210 target in both cell types. It was decreased by miR-210-mimic and was increased by miR-inhibitor. Furthermore, reducing GPD1L by endogenously elevated miR-210 (in hypoxia), miR-210-mimic or by GPD1L siRNA resulted in elevated HIF1A protein and EDN2 levels, implying a vital role for GPD1L in the hypoxic induction of EDN2. Under normoxic conditions, forskolin (adenylyl cyclase activator) triggered changes typical of hypoxia. It elevated HIF1A, EDN2 and miR-210 while inhibiting GPD1L. Furthermore, HIF1A silencing greatly reduced forskolin’s ability to elevate EDN2 and miR-210. This study highlights the novel regulatory roles of miR-210 and its gene target, GPD1L, in hypoxia and cAMP-induced EDN2 by human granulosa-lutein cells.
Source: The journal of Reproductive Science
Be First to Comment